

SYNTHESIS OF MULTIAXIS STATIONARY NON-GAUSSIAN **SHAPED VIBRATION**

Damián González, CTAG, damian.gonzalez@ctag.com Advisor: Roberto López, Universidade de Vigo, valcarce@gts.uvigo.es

MOTIVATION

Road vibration is **random** in nature and **non-Gaussian**, although it is usually approximated through stationary Gaussian processes with prescribed PSD.

Since objects move in a 3D space, vibration is also a multidimensional physical process, but is usually simplified to a single dimension.

In order to properly evaluate the effect of vibration on structures, a proper synthesis algorithm is necessary for reproducing the vibration environment in the laboratory.

RESULTS AND DISCUSSION

Block processing

Block processing is commonly used for the synthesis of large random signals in order to profit from the computational advantages of the FFT.

$$z[n] = \sum_{k} w[n - kD] x^{(k)}[n]$$

Relation between the autocorrelation of z and x: $r_z[n, \tau] = r_x[n, \tau]W[n, \tau]$

Applications

OBJECTIVE

The objective of this thesis is the development of a method for the synthesis of non-Gaussian multiaxis road vibration, with a prescribed PSD, pdf and crosscorrelation. The goal is to capture the properties of the interaction between the wheel and the road in a vehicle, and provide the tools for reproducing this process at the laboratory.

METHODOLOGY

The methodology for the development of the thesis includes four main steps.

$$W[n,\tau] = \sum_{k} w[n-kD]w[n-kD-\tau]$$

For a stationary $x^{(k)}[n]$, the process z[n] will be stationary if $W[n, \tau] = W[\tau]$. The stationarity of $W[n, \tau]$ can be quantified as:

$$A[\tau] = \max_{n} (W[n,\tau]) - \min_{n} (W[n,\tau]) \qquad \qquad Q = \max_{\tau} (A[\tau])$$

where the stationarity increases as Q tends to 0.

Process characterization

- Field measurements
- Signal analysis

Single axis non-Gaussian synthesis

• Effect of block processing

• Algorithmic complexity of the phase manipulation technique

Multiaxis non-Gaussian synthesis

• Extension of the phase manipulation techniques to non-Gaussian multiaxis vibration synthesis

Control of multiaxis non-Gaussian vibration

• Analysis of the possible techniques applicable to the control of the synthesized vibration

PLANNING FOR 2014-2015

- The stationarity increases for increasing overlap factors.
- Most of the windows perform similarly above 50% overlap.
- For non-Gaussian processes, increasing the overlap will affect the distribution due to the CLT. A trade-off between stationarity and non-Gaussianity is required.

Uncertainty of the spectral estimates

Spectral estimation of non-Gaussian road vibration requires knowledge of the corresponding uncertainty.

- For Gaussian processes: $z = \frac{2K\tilde{S}_{\chi\chi}(\omega)}{S_{\chi\chi}(\omega)} \sim \chi^2_{2K}$, with $\tilde{S}_{\chi\chi}(\omega)$ the Welch periodogram.
- For large FFT sizes and/or averages, and non-Gaussian processes, the previous expression holds due to the CLT.
- Relation between the uncertainty of the estimate and the road measurement parameters:

Tasks for 2014-2015 include field measurements and analysis for process characterization, and further investigation of single axis non-Gaussian vibration synthesis.

		2014				2015			
Task	Description	T1	T2	T3	T4	T1	T2	T3	T4
1	Literature review								
2.a	Definition of the measurement conditions								
2.b	Field measurements								
2.c	Signal analysis						R		
3	Single axis non-Gaussian random vibration synthesis								

REFERENCES

[1] Kihong Shin and Joseph Hammond. Fundamentals of signal processing for sound and vibration engineers. John Wiley & Sons, 2008.

[2] M.Grigoriu. Applied non-Gaussian processes: examples, theory, simulation, linear random vibration, and MATLAB solutions. PTR Prentice Hall, 1995.

[3] D. O. Smallwood. Generation of partially coherent stationary time histories with non-Gaussian *distributions*. Technical report, Sandia National Labs., Albuquerque, NM (United States), 1996.