

Audio Segmentation and its Applications in Speaker Characterization

Paula López Otero

(日)

- 1 What is Audio Segmentation?
- 2 How to Do it?
- **3** Reducing the false alarm rate
- 4 Reducing the Mis-detection Rate
- 5 Applications: Speaker Diarization
- 6 Applications: Automatic Speech Recognition
- 7 Ongoing work: Emotion Recognition

< ロ > < 同 > < 回 > < 回 >

Division of a signal into homogeneous segments

Speaker segmentation

・ロト ・四ト ・ヨト ・ヨト

alle- and an alle- and a second s

Division of a signal into homogeneous segments

Speaker segmentation

<ロ> <同> <同> < 回> < 回>

Speaker diarization ("who spoke when")

- Indexing of multimedia information
 - classification of music (song title, genre...)
- Automatic speech recognition (ASR)
 - Removal of non-speech segments
 - When we know "who spoke when" \Rightarrow Speaker adaptation

■ Speaker diarization ("who spoke when")

- Indexing of multimedia information
 - classification of music (song title, genre...)
- Automatic speech recognition (ASR)
 - Removal of non-speech segments
 - When we know "who spoke when" \Rightarrow Speaker adaptation

- Speaker diarization ("who spoke when")
- Indexing of multimedia information
 - classification of music (song title, genre...)
- Automatic speech recognition (ASR)
 - Removal of non-speech segments
 - When we know "who spoke when" \Rightarrow Speaker adaptation

The Beatles

- Speaker diarization ("who spoke when")
- Indexing of multimedia information

AC/DC

Judas Priest

- classification of music (song title, genre...)
- Automatic speech recognition (ASR)
 - Removal of non-speech segments
 - When we know "who spoke when" \Rightarrow Speaker adaptation

Queen

- Speaker diarization ("who spoke when")
- Indexing of multimedia information
 - classification of music (song title, genre...)
- Automatic speech recognition (ASR)
 - Removal of non-speech segments
 - \blacksquare When we know "who spoke when" \Rightarrow Speaker adaptation

・ロト ・回ト ・モト ・モト

- Speaker diarization ("who spoke when")
- Indexing of multimedia information
 - classification of music (song title, genre...)
- Automatic speech recognition (ASR)
 - Removal of non-speech segments
 - \blacksquare When we know "who spoke when" \Rightarrow Speaker adaptation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 1 What is Audio Segmentation?
- 2 How to Do it?
- **3** Reducing the false alarm rate
- 4 Reducing the Mis-detection Rate
- 5 Applications: Speaker Diarization
- 6 Applications: Automatic Speech Recognition
- 7 Ongoing work: Emotion Recognition

< ロ > < 同 > < 回 > < 回 >

The BIC algorithm

$$N(\mu_X, \Sigma_X) \qquad N_X = vectors in X$$

$$N(\mu_Y, \Sigma_Y) \qquad N_Y = vectors in Y$$

$$N(\mu_Z, \Sigma_Z) \qquad N_Z = N_X + N_Y$$

- A window of data (Z) is taken and divided into two sub-windows (X,Y) at frame i
- X, Y and Z are modelled with a multivariate Gaussian
- A hypothesis test is applied for acoustic change detection
 - *H*₀: No acoustic change in window *Z*
 - *H*₁: The window contains an acoustic change at point *i*

・ロト ・四ト ・ヨト ・ヨト

G. Schwarz, "Estimating the dimension of a model"

The BIC algorithm/

$$N(\mu_X, \Sigma_X) \qquad N_X = vectors in X$$

$$N(\mu_Y, \Sigma_Y) \qquad N_Y = vectors in Y$$

$$N(\mu_Z, \Sigma_Z) \qquad N_Z = N_X + N_Y$$

BIC: The maximum likelihood ratio between H₀ and H₁

$$R(i) = L_X + L_Y - L_Z = N_Z \log |\Sigma_Z| - N_X \log |\Sigma_X| - N_Y \log |\Sigma_Y|$$

$$\Delta BIC(i) = BIC(H_1) - BIC(H_0) = R(i) - \lambda \frac{1}{2}(d + \frac{1}{2}d(d + 1))\log(N_Z)$$

Decision:

 $\blacksquare \quad \Delta BIC(i) > 0$

 λ must be tuned for each dataset

G. Schwarz, "Estimating the dimension of a model"

・ロト ・四ト ・ヨト ・ヨト

M. Cettolo, M. Vescovi, "Efficient Audio Segmentation Algorithms based on the BIC" $\langle \Box \rangle \land (\overline{\Box}) \land$

M. Cettolo, M. Vescovi, "Efficient Audio Segmentation Algorithms based on the BIC" $\langle \Box \rangle \land \langle \Box \rangle \land \langle \Box \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle$

M. Cettolo, M. Vescovi, "Efficient Audio Segmentation Algorithms based on the BIC" $\langle \Box \rangle \land \langle \Box \rangle \land \langle \Box \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle$

M. Cettolo, M. Vescovi, "Efficient Audio Segmentation Algorithms based on the BIC" $\langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle \rangle$

M. Cettolo, M. Vescovi, "Efficient Audio Segmentation Algorithms based on the BIC" $\langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle \rangle$

M. Cettolo, M. Vescovi, "Efficient Audio Segmentation Algorithms based on the BIC"

P. López Otero — Audio Segmentation and its Applications in Speaker Characterization

・ロト ・回ト ・ヨト ・ヨト

M. Cettolo, M. Vescovi, "Efficient Audio Segmentation Algorithms based on the BIC" $\langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle \rangle$

Issue: sensitivity

Too sensitive \Rightarrow false alarms

Too little sensitive \Rightarrow deletions

・ロト ・回ト ・モト ・モト

Issue: sensitivity

Too sensitive \Rightarrow false alarms

- 1 What is Audio Segmentation?
- 2 How to Do it?
- **3** Reducing the false alarm rate
- 4 Reducing the Mis-detection Rate
- 5 Applications: Speaker Diarization
- 6 Applications: Automatic Speech Recognition
- 7 Ongoing work: Emotion Recognition

< ロ > < 同 > < 回 > < 回 >

Baseline System

Baseline System

Adaptive Strategy

- $p_{discard}$ and Θ_{BIC} increase when the system is accepting too many false alarms
- $p_{discard}$ and Θ_{BIC} decrease when the system is not accepting false alarms
- Initially: $p_{discard} = 0$, $\Theta_{BIC} = 0$

Poisson-based Strategy

- *p_{discard}* follows a Poisson cumulative density function
- *p*_{discard} depends on the expected number of change-points (mean of the distribution)
- Initially: p_{discard} = 0

Strategies

Uniform-based Strategy

- pdiscard is constant
 - **p**_{discard} \downarrow : high tolerance to false alarms
 - **p**_{discard} \uparrow : low tolerance to false alarms

Adaptive Strategy

- $p_{discard}$ and Θ_{BIC} increase when the system is accepting too many false alarms
- $p_{discard}$ and Θ_{BIC} decrease when the system is not accepting false alarms
- Initially: $p_{discard} = 0, \Theta_{BIC} = 0$

Poisson-based Strategy

- *p*_{discard} follows a Poisson cumulative density function
- *p*_{discard} depends on the expected number of change-points (mean of the distribution)
- Initially: p_{discard} = 0

Strategies

Uniform-based Strategy

pdiscard is constant

- **p**_{discard} \downarrow : high tolerance to false alarms
- **\square** $p_{discard}$ \uparrow : low tolerance to false alarms

P. Lopez-Otero, L. Docio-Fernandez, C. Garcia-Mateo, "Novel Strategies for Reducing the False Alarm Rate in a Speaker Segmentation System"

Adaptive Strategy

- $p_{discard}$ and Θ_{BIC} increase when the system is accepting too many false alarms
- $p_{discard}$ and Θ_{BIC} decrease when the system is not accepting false alarms
- Initially: $p_{discard} = 0, \Theta_{BIC} = 0$

Poisson-based Strategy

- *p*_{discard} follows a Poisson cumulative density function
- *p*_{discard} depends on the expected number of change-points (mean of the distribution)
- Initially: p_{discard} = 0

Strategies

Uniform-based Strategy

- p_{discard} is constant
 - $p_{discard} \downarrow$: high tolerance to false alarms
 - $p_{discard}$ \uparrow : low tolerance to false alarms

P. Lopez-Otero, L. Docio-Fernandez, C. Garcia-Mateo, "Novel Strategies for Reducing the False Alarm Rate in a Speaker Segmentation System"

Experimental results

Database

Metrics

- TC-STAR 2006 ASR evaluation campaign
- Spanish parliament sessions

Precision:
$$P = \frac{c}{c+i} \times 100$$

Recall:
$$R = \frac{c}{c+d} \times 100$$

F-score:
$$F = \frac{2PR}{P+R}$$

Results

System	Р	R	F
Baseline	57.46	85.59	65.99
Adaptive	66.98	85.59	73.17
Uniform	80.97	81.75	81.22
Poisson	76.21	83.09	79.05

<ロ> <同> <同> < 回> < 回>

- 1 What is Audio Segmentation?
- 2 How to Do it?
- 3 Reducing the false alarm rate
- 4 Reducing the Mis-detection Rate
- 5 Applications: Speaker Diarization
- 6 Applications: Automatic Speech Recognition
- 7 Ongoing work: Emotion Recognition

< ロ > < 同 > < 回 > < 回 >

Reducing the Mis-detection Rate

MultiBIC Strategy

•

・ロト ・四ト ・ヨト ・ヨト

Reducing the Mis-detection Rate

MultiBIC Strategy

BIC

$$\Delta BIC(i) = L_i - \lambda P$$

$$P = \frac{1}{2} (d + \frac{1}{2}d(d + 1)) logL$$

$$L_i = \frac{L}{2} log |\Sigma| - \frac{L_1}{2} log |\Sigma_1| - \frac{L_2}{2} log |\Sigma_2|$$

MultiBIC

$$\Delta MultiBIC(i,j) = L_{ij} - \lambda P$$

$$P = d + \frac{1}{2}d(d+1)logL$$

$$L_{ij} = \frac{L}{2}log|\Sigma| - \frac{L_1}{2}log|\Sigma_1| - \frac{L_2}{2}log|\Sigma_2| - \frac{L_3}{2}log|\Sigma_3|$$

P. Lopez-Otero, L. Docio-Fernandez, C. Garcia-Mateo, "MultiBIC: an Improved Speaker Segmentation Technique for TV Shows" $\langle \Box \rangle \times \langle \overline{\Box} \rangle \times \langle \overline{\Xi} \rangle \times \langle \overline{\Xi} \rangle$

P. López Otero — Audio Segmentation and its Applications in Speaker Characterization

17/28

Reducing the Mis-detection Rate

Experimental results

Database

Metrics

- TV shows
 - sit-coms: canned laughter, jingles
 - drama series:
 background music

Precision:
$$P = \frac{c}{c+i} \times 100$$

Recall:
$$R = \frac{c}{c+d} \times 100$$

F-score:
$$F = \frac{2PR}{P+R}$$

Results

	Test	С	d	i	Р	R	F
1	BIC	466	158	6	98.06	66.13	78.98
	MultiBIC		96	2	99.46	79.28	88.21
2	BIC	497	169	5	98.66	66.36	79.34
	MultiBIC		82	4	99.17	83.50	90.67
3	BIC	402	147	0	100	63.43	77.63
	MultiBIC		61	0	100	84.83	91.79

・ロト ・回ト ・モト ・モト

- 1 What is Audio Segmentation?
- 2 How to Do it?
- **3** Reducing the false alarm rate
- 4 Reducing the Mis-detection Rate
- 5 Applications: Speaker Diarization
- 6 Applications: Automatic Speech Recognition
- 7 Ongoing work: Emotion Recognition

< ロ > < 同 > < 回 > < 回 >

Speaker Diarization

Audio and speaker segmentation

- Non-speech segments are removed
- Speech segments of different speakers are divided

Clustering

- Agglomerative hierarchical clustering
- How many clusters?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The C-score Technique

•

The C-score Technique

P. López Otero — Audio Segmentation and its Applications in Speaker Characterization

•

• A number of clusters n^* is selected such that:

- Intra-cluster similarity (I_n) is minimized
- Extra-cluster similarity (E_n) is maximized

$$C\text{-score}_n = \frac{2I_n(1-E_n)}{I_n+(1-E_n)}$$

$$n^* = \underset{i=n_{min},...,n_{max}}{\operatorname{arg\,max}} C$$
-score;

< ロ > < 同 > < 回 > < 回 >

Experimental results

Database

Metrics

- Albayzin 2010 speaker diarization evaluation database
- Broadcast news programmes
- Speaker error rate (SPKE)
- False alarm rate (FAS)
- Missed speech (MISS)

Results

Segmentation	Method	FAS	MS	SPKE (%)
Manual	C-score	0%	0 %	16.1 ± 0.9
	BIC	0 / 0		29.0 ± 1.1
Automatic	C-score	2.2 %	7.3%	15.0 ± 0.7
	BIC			19.4 ± 0.8

<ロ> <同> <同> < 回> < 回>

- 1 What is Audio Segmentation?
- 2 How to Do it?
- 3 Reducing the false alarm rate
- 4 Reducing the Mis-detection Rate
- 5 Applications: Speaker Diarization
- 6 Applications: Automatic Speech Recognition
- 7 Ongoing work: Emotion Recognition

< ロ > < 同 > < 回 > < 回 >

Applications: Automatic Speech Recognition

Experimental results

Database

Metrics

$$WER = \frac{S + D + I}{W}$$

 Broadcast news programmes in Galician language

	Speakers	Substitutions	Deletions	Insertions	WER
Manual segmentation	All	14.9 %	4.9 %	4.4 %	24.2 %
	Habitual	12.1 %	3.4 %	4.6 %	18.3 %
	Others	18.2 %	5.9 %	4.3 %	28.4 %
Automatic segmentation	All	14.9 %	6.5 %	3.6 %	25.0 %
	Habitual	10.6 %	4.5 %	3.6 %	18.7~%
	Others	17.9 %	7.8 %	3.7 %	29.4 %
	All	13.7 %	6.2 %	3.3 %	23.1 %
Automatic segmentation and clustering	Habitual	9.9 %	4.3 %	3.3 %	17.6 %
	Others	16.4 %	7.5 %	3.3 %	27.2 %

Results

P. Lopez-Otero, L. Docio-Fernandez, C. Garcia-Mateo, A. Cardenal-Lopez, "On the Influence of Automatic Segmentation and Clustering in Automatic Speech Recognition"

- 1 What is Audio Segmentation?
- 2 How to Do it?
- **3** Reducing the false alarm rate
- 4 Reducing the Mis-detection Rate
- 5 Applications: Speaker Diarization
- 6 Applications: Automatic Speech Recognition
- 7 Ongoing work: Emotion Recognition

< ロ > < 同 > < 回 > < 回 >

Ongoing work: Emotion Recognition

- Automatic estimation of speaker's affect and depression level
- Application of speaker verification techniques to emotion recognition
 - Feature dimensionality reduction
 - Emotional characterization of speech segments

E. Sanchez-Lozano, P. Lopez-Otero, L. Docio-Fernandez, E. Argones-Rua, J.L. Alba-Castro, "Audiovisual Three-Level Fusion for Continuous Estimation of Russell's Emotion Circumplex"

Thank you for your attention

plopez@gts.uvigo.es

(日)