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Self-Embedding Authentication Method

Hash and Watermark Computation

STEP 1:
Divide into

√
M ×

√
M pixel blocks

STEP 2:
Project each block onto Nh pseudorandom

sequences sj obtaining vector g

STEP 3:
Generate hash vector h of each block

thresholding vector |g| with Te

STEP 4:
Synthesize the watermark w of each block

as function of sequences of PRNG
seeded with Np permutations of h

Hash Generation

Watermark Computation

Detection & Performance Analysis

• The hash and the watermark are recomputed using the re-
ceived image

• The decision of presence or absence of the estimate of the
watermark is formulated as the following hypothesis test:

H0 : z = η (x + γŵ) + n

H1 : z = x + γŵ

•We model the effect of the embedding and the attack on
the estimate of the hash on the detector side and how a non-
perfect estimate of the watermark deteriorates the overall per-
formance

• The performance of the algorithm is measured by means of
the receiver operating characteristic (ROC) curve
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Analytical (dashed lines) and empirical (solid lines) ROCs for a set of 14

images.

Conclusions

• The performance analysis of the self-embedding authentica-
tion method proposed by Fridrich and Goljan was carried out,
verifying its accurateness empirically

• The embedding process of a self-embedding authentication
method can modify the robust hash of the image corrupting
the reconstructed watermark
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• Doḿınguez-Conde, G.; Comesaña, P.; and Pérez-González, F., ”Per-
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Flat Fading Channel Estimation Based on Dirty Paper Coding

Background

Channel estimation transversal problem:

•Multimedia forensics

• Acoustic applications
• Communications
Some drawbacks of traditional training-based estimation tech-
niques:

• The training signals must be frequently sent in order to update
the channel state information in fast-varying channels

• The information bearing signal has to be shut down, requiring
the implementation of additional logic to synchronize the pilot
sequence slot

More recently, Superimposed Training is proposed sharing key
elements with watermarking:

• Adding a known sequence to the information sequence

• Power restricted signals

•Host-interference

Problem Formulation

ENCODER ESTIMATOR
x

KK

y z

nt0

t̂0(z)

Block diagram of the flat fading channel estimation problem.

•x Information sequence

•K Secret key

• y = x + α (Q∆(x− d)− (x− d))

• t0 Scaling factor

•n Channel noise

• z = t0x + n

• t̂0(z) Estimate of the scaling factor

Proposed DPC-based Estimation Technique

• Requirements:
– No interruptions in the transmission

– Power restrictions in the embedding distortion

– Accurate estimation with few samples

– Affordable computational resources

•Work hypotheses:

– Host to Quantizer Ratio (HQR) ,
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• Two Considered Scenarios:

– High-SNR: HQR≫ 1, SCR≪ 1, and TNQR ≪ 1

– Low-SNR: HQR≫ 1, SCR≪ 1, TNQR > 1, and TNHR
≪ 1

Maximum Likelihood Estimation

Without a priori knowledge on t0, the Maximum Likelihood esti-
mation is followed:

t̂0(z) = argmax
t

fZ|T,K(z|t, d)

= argmin
t

−
L
∑

i=1

log
(

fZ|T,K(zi|t, di)
)

,

Assuming that:

•X i.i.d

•D ∼ U([−∆/2,∆/2]L)

•N i.i.d and independent of X and D

For the sake of mathematical tractability Gaussian distributed
host and Gaussian distributed noise are assumed for the low-SNR
and the high-SNR cases.

Example: Probability Density Function Ap-

proximations for Low-SNR
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DWR = 20 dB, WNR = 0 dB, d = ∆/5, t = 1.00, α = 0.75
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Example: Cramér-Rao Bound Approximations
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CRB α = 0.1
low−SNR CRB α = 0.1
high−SNR CRB α = 0.1
CRB α = 0.5
low−SNR CRB α = 0.5
high−SNR CRB α = 0.5
CRB α = 1
low−SNR CRB α = 1
high−SNR CRB α = 1
Var CRB

Complex Scaling Factor Estimation for High-

SNR

• Codebook defined in polar coordinates

• Problem decoupled: a) an estimator |t̂0(z)| of the magnitude
and b) an estimator ∡t̂0(z) of the argument
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DPC DWR = 40 dB

PDD DWR = 40 dB

MPDD DWR = 40 dB

DPC DWR = 30 dB

PDD DWR = 30 dB

MPDD DWR = 30 dB

DPC DWR = 20 dB

PDD DWR = 20 dB

MPDD DWR = 20 dB
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DPC WNR = -3 dB
DPC |t0| WNR = -3 dB
DPC ∡t0 WNR = -3 dB

PDD WNR = -3 dB
DPC WNR = 0 dB
DPC |t0| WNR = 0 dB
DPC ∡t0 WNR = 0 dB

PDD WNR = 0 dB
DPC WNR = 3 dB
DPC |t0| WNR = 3 dB
DPC ∡t0 WNR = 3 dB

PDD WNR = 3 dB
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