

A GENERAL FRAMEWORK FOR COST-SENSITIVE BOOSTING

Author: lago Landesa Vázquez

Supervisor: José Luis Alba Castro

Universida_{de}Vigo

Overview

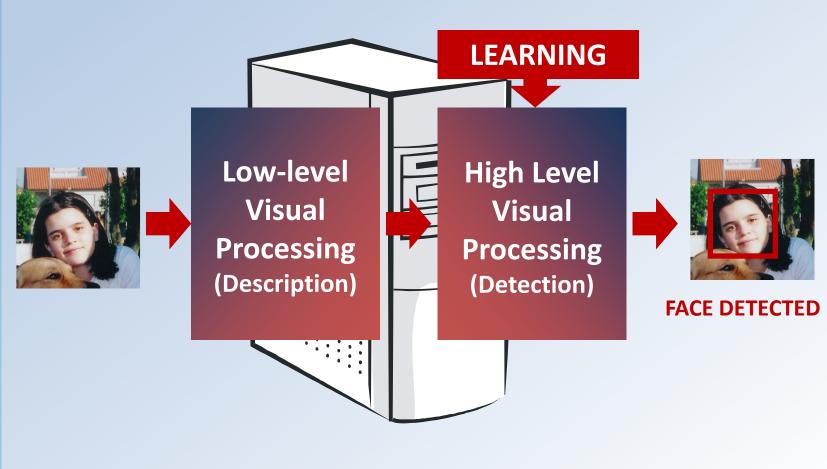
- Motivation
- PhD Thesis
- Current work

MOTIVATION

Face Detection in Computers

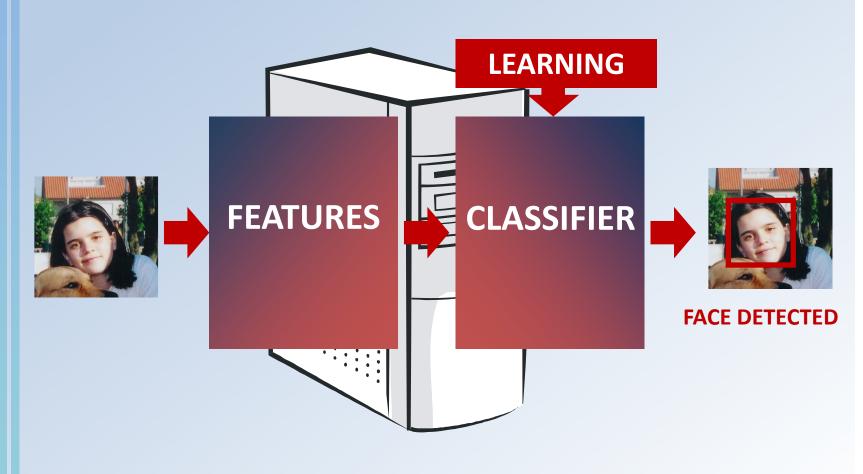
MOTIVATION

- PHD THESIS
- CURRENT WORK



Face Detection in Computers

- MOTIVATION
- PHD THESIS
- CURRENT WORK



Reference model

MOTIVATION

• PHD THESIS

• CURRENT WORK Viola and Jones Face Detector*. They succeeded, for the first time, to detect faces in images in real-time.

 One of the milestones in Computer Vision of the last decade.

* Viola, P., Jones, M., 2004. **Robust real-time face detection**. International Journal of Computer Vision 57, 137–154.

Viola and Jones Detector Framework

MOTIVATION

PHD THESIS

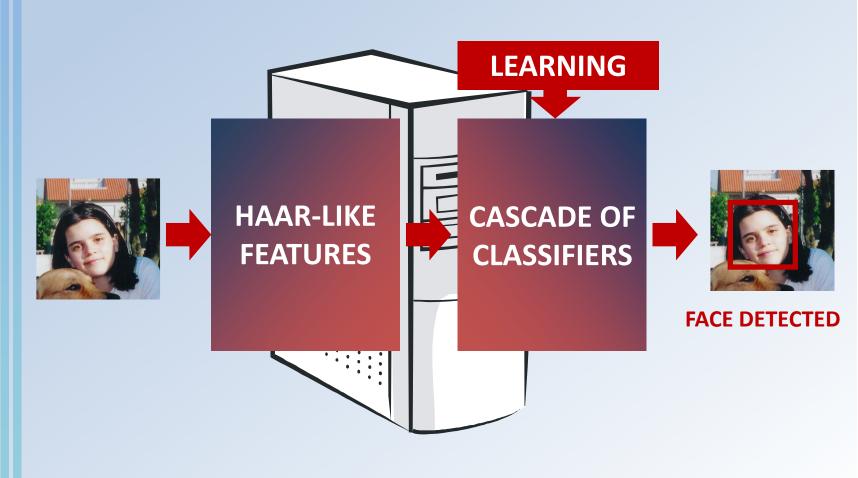
• CURRENT WORK

- It is based on three key ideas...
 - <u>Haar-like</u> as features (efficiently computable using Integral Images)
 - AdaBoost as learning algorithm
 - <u>Cascaded architecture</u> to improve efficiency

Viola and Jones Detector Framework

MOTIVATION

- PHD THESIS
- CURRENT WORK



Early stages of the work

MOTIVATION

PHD THESISCURRENT

WORK

- Thorough study of the Viola-Jones face detector and related works.
- Implementation, from scratch, of our own Viola-Jones training platform.
- Collect databases of faces and non-faces, with enough generalization capability.
- Train several face detectors, with different parameters.
- Extension to eye, nose and mouth localizers.

PHD THESIS

First Goals

MOTIVATIONPHD THESISCURRENTWORK

Main goal:

 Detailed analysis on each of the levels of the Viola-Jones framework to propose novel improvements, applied to different object detection scenarios.

First goals

MOTIVATION

- PHD THESIS
- CURRENT WORK

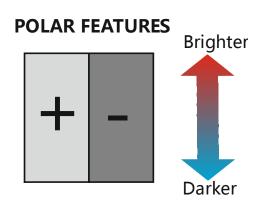
 We have studied the three main layers of the Viola-Jones framework.

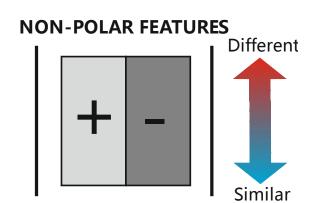
CASCADE ARCHITECTURE

ADABOOST

HAAR-LIKE FEATURES

- MOTIVATION
- PHD THESIS
- CURRENT WORK
- Feature Level: New typologies of features with descriptive or computational advantages.
 - Polarity invariant features [1]



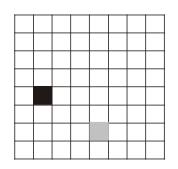


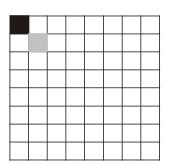
[1] I. Landesa-Vázquez, J.L. Alba-Castro. *The Role of Polarity in Haar-like features for Face Detection*. XX International Conference on Pattern Recognition (ICPR 2010), 23-26 August 2010, Istanbul (Turkey)

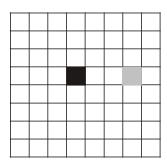
MOTIVATIONPHD THESISCURRENT

WORK

- Feature Level: New typologies of features with descriptive or computational advantages.
 - Polarity invariant features [1]
 - Quantum features [2]







[2] I. Landesa-Vázquez, F. Parada-Loira, J.L. Alba-Castro. *Fast Real-time Multiclass Traffic Sign Detection Based on Novel Shape and Texture Descriptors*. XIII IEEE Conference on Intelligent Transportation Systems (ITSC 2010), 19-22 September 2010, Funchal (Portugal)

MOTIVATION

PHD THESIS

• CURRENT WORK

- Learning Level: New theoretically motivated asymmetric AdaBoost algorithms.
 - Cost Generalized AdaBoost [3]
 - AdaBoostDB [4]

[3] I. Landesa-Vázquez, J. L. Alba-Castro. *Shedding Light on the Asymmetric Learning Capability of AdaBoost.* Pattern Recognition Letters 33, pp. 247-255, 2012

[4] I. Landesa-Vázquez, J. L. Alba-Castro. *Double Base Asymmetric AdaBoost.* Neurocomputing 18, pp. 101-114, 2013

MOTIVATION

PHD THESIS

• CURRENT WORK

- Cascade Architecture Level: We have designed several changes
 - Optimal/automatical sizing
 - Inter-stage information repechage
 - Data source fusion

Final focus

MOTIVATIONPHD THESISCURRENT

WORK

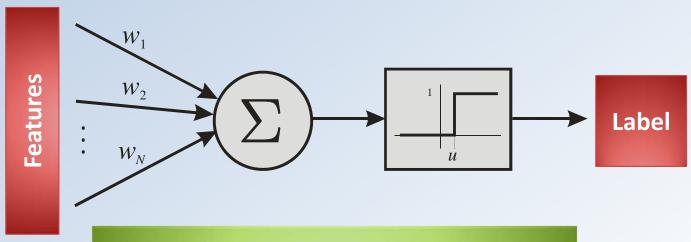
• Most of our efforts have been focused on the Learning Level, the most theoretical part.

Final title : <u>"A General Framework for Cost-Sensitive Boosting"</u>

AdaBoost

- MOTIVATION
- PHD THESIS
- CURRENT WORK

AdaBoost is a learning algorithm which selects weak classifiers from a pool, and combine them into a final strong classifier.



SELECT AND COMBINE

AdaBoost

MOTIVATION

- PHD THESIS
- CURRENT WORK

AdaBoost is a learning algorithm which selects weak classifiers from a pool, and combine them into a final strong classifier.
Selection
Weak Classifiers

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$
Strong Classifier

SELECT AND COMBINE

Asymmetric Learning

MOTIVATIONPHD THESISCURRENT WORK

- Object detection in images is a paradigmatic asymmetric problem:
 - Positives are extremely scarce and valuable.
 - Negatives have a huge variability compared to that of positives.
 - To be feasible (real-time), negatives must be rejected as soon as possible.

Asymmetric Learning in the Viola-Jones Framework

MOTIVATIONPHD THESISCURRENT WORK

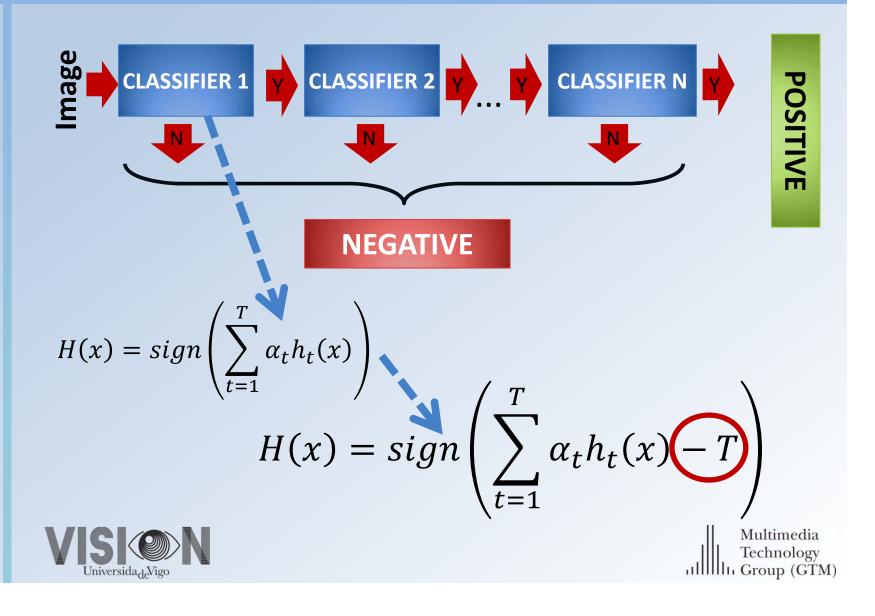
However, as originally stated, AdaBoost is a cost-insensitive learning algorithm.

■ In the Viola and Jones framework, the threshold of every boosted classifier of is modified "a posteriori" (after training) to get an asymmetric result → Non-optimal solution.

Viola-Jones Strategy

MOTIVATION

- PHD THESIS
- CURRENT WORK



Asymmetric AdaBoost variants

MOTIVATIONPHD THESISCURRENT WORK

- Several "asymmetric AdaBoost" variants have been proposed in the literature...
 - AdaCost
 - AsymBoost
 - AdaC1, AdaC2, AdaC3
 - CSB0, CSB1, CSB2
 - Cost-Sensitive AdaBoost

Heuristics
No theoretical
guarantees

Too complex

Our proposals

MOTIVATION

PHD THESIS

• CURRENT WORK We have followed two different ways:

- Cost-generalized AdaBoost
- AdaBoostDB

Cost-Generalized AdaBoost

- ORIGIN
- MOTIVATION
- PHD THESIS
- CURRENT WORK

 Several papers claim that, AdaBoost remains being cost-insensitive even when initialized with an uneven (asymmetric) weight distribution.

Cost-Generalized AdaBoost

MOTIVATIONPHD THESISCURRENT WORK

- We have refuted that afirmation, proving [3] theoretically and practically, that <u>asymmetric</u> weight initialization is an effective way to reach boosted cost-sensitive behaviors.
- It preserves all the theoretical guarantees of original boosting, but for asymmetric problems.

AdaBoostDB

MOTIVATIONPHD THESISCURRENT WORK

- Another way is defining a Double-Base exponential bound (different base for different classes), and minimize it.
- It can be modeled by a polynomial, and allows a very efficient search method.
- Results are equivalent to "Cost-Sensitive Boosting" but 200 times faster.

CURRENT WORK

Current Work

MOTIVATIONPHD THESISCURRENT WORK

• We are writing a final comparative framework of all cost-sensitive boosting algorithms in the literature with Cost-Generalized AdaBoost and AdaBoostDB.

 Defense of the PhD scheduled for the beginning of 2014.

Thank you for your attention!!

