Tonal and Harmonic Source Localization using Acoustic Vector Sensors Universidad Vigo DAVID PÉREZ CABO, Microflown AVISA, cabo@microflown.com

DAVID PÉREZ CABO, Microflown AVISA, cabo@microflown.com Advisors: Manuel Sobreira Seoane, Universidade de Vigo, msobre@gts.uvigo.es Hans Elias de Bree, Microflown AVISA, debree@microflown.com

2016 Workshop on monitoring PhD Student Progress, Vigo

MOTIVATION

With the number of non-controlled flying and sailing vehicles going up, also the need to monitor their trajectories in the space increases. Moving sound source localization and tracking for outdoors measurements under non-controlled conditions usually leads to an unresolved non-stationary problem:

- Non-Stationary Background Noise.
- Non-Stationary Acoustic Sources .
- The number of active sources is unknown and time-varying.

Most of the acoustic sources of interest have strong tonal, harmonic or quasiharmonic components within their acoustic signature, as planes, boats, helicopters, UAVs, drones, etc.

Potential Targets

RESULTS AND DISCUSSION

• Relativistic measurement model for far field DOA (N sensors located at s_i).

 $v_i(\mathbf{s}_i, t) = p_i(\mathbf{s}_i, t) \tilde{\mathbf{n}} / \rho c_0 \quad \Rightarrow \quad \mathbf{y}_i(t) = \begin{bmatrix} y_{p,i}(t) \\ \mathbf{y}_{v,i}(t) \end{bmatrix} = \begin{bmatrix} 1 \\ \mathbf{u}_i(t) / \rho c_0 \end{bmatrix} p_i(t) + \mathbf{e}_i(t)$

Sensors observe the source at different positions in the past at $\mathbf{x}_{\mathbf{s}}(t - \tau_i)$.

• Constant Velocity (CV) model from $\mathbf{x}_{\mathbf{s}}(t - \tau_i)$ to $\mathbf{x}_{\mathbf{s}}(t)$.

OBJECTIVES

The main objective of the thesis is to develop a framework for detecting, localizing and tracking tonal or harmonic sources using a wireless distributed network of Acoustic Vector Sensors (AVS). The main task is to design algorithms for:

• Sensors with DSP and communication capabilities: Deetection, source separation and source tracking algorithms for a single AVS.

- Central processor: Source localization and tracking algorithms to combine the information collected by the AVS within the network.
 Key objectives for this year
- Data gathering.
- Implementation of algorithms to localize and track moving sound sources using a network of AVS.
- Characterization of variables that affect the detection and the localization.

$$d = e - c_0, \quad b = 2(\tau_{det}e + a)$$

$$\vec{\mathbf{x}}_s(t - \tau_2)$$

$$\mathbf{d}_2$$

$$\mathbf{d}_2$$

$$\mathbf{d}_2$$

$$\mathbf{d}_3$$

$$\mathbf{d}_4 = -\mathbf{\dot{x}}_s(t) - \mathbf{s}_i \|^2 + \tau_{det}(\tau_{det}e + 2d)$$

$$\mathbf{d}_5 = \|\mathbf{x}_s(t) - \mathbf{s}_i\|^2 + \tau_{det}(\tau_{det}e + 2d)$$

$$\mathbf{d}_5 = \|\mathbf{d}_5 - \mathbf{d}_5\|^2 + \mathbf{d}_5 + \mathbf{d}_5$$

• Relativistic 1st-order Extended Kalman Filter based on the proposed model. Compared to its non-relativistic counterpart.

- Speed-independent performance for the range of speeds of interest.
- Unlike other approaches, the relativistic EKF leads to an unbiased tracking algorithm if the source moves at constant speed.

OUTCOMES (TO DATE)

 $\mathbf{x}_{s}(t)$

- Extensive measurements have been performed under controlled and out-
- Design and Improvevement of algorithms to account and compensate for effects of real conditions.

Methodology

Field and laboratory research will be mixed to achieve a quantitative comparison of the algorithms.

doors conditions using RC aircrafts.

- European Rotorcraf Forum 2015 Conference Paper: David P. Cabo *et al.* "A wireless network of acoustic multimission sensors to detect, locate and track simultaneously various helicopters"
- IEEE Transactions on Signal Processing Journal Paper: David P. Cabo *et al. "Relativistic Acoustic Source Tracking using Bearing-Only Measurements in a Wireless Network of Acoustic Vector Sensors"* (in peer review)

REFERENCES

[1] M. Hawkes *et al.*, "Acoustic Vector Sensor Beamforming and CAPON direction estimation", IEEE Trans. Signal Processing, vol. 46, pp 2291-304, Sept. 1998.

[2] Yaakov B. Shalom *et al.*, "State estimation for Non-Linear Dynamic Systems" in *Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software*, John Wiley & Sons, Inc., 2001.

[3] M. Hawkes *et al.*, Wideband Source Localization Using a Distributed Acoustic Vector-Sensor Array. IEEE Transactions on signal processing , Vol. 51, NO. 6, pp. 1479-1491, June 2003

[4] D. Levin *et al.*, "Direction of Arrival Estimation using acoustic vector sensors in presence of noise", ICASSP 2011.

Different scenarios with different levels of complexity are considered.

Research Plan

Developed	2015		2016									
	Nov	Dec	Jan	Feb	Mar	ch		Jun	Aug	Sep	Oct	
Tasks	1	2	3	4	5	6	7	8 (*)	9	10	11	
1. Sensor Calibration												
2.Generalization												
3. Implementation												
4. Tests												
5. Multisensor tracking BOT												
5. Publications (Journals)												
Internoise 2016									(*)			

[5] X. Zhong *et al.*, "Particle filtering approaches for multiple acoustic source detection and 2D direction of arrival estimation using a single acoustic vector sensor", IEEE Trans. Signal Processing, vol. 60, no. 9, pp. 4719-33, 2012.

[6] Xionghu Zhong *et al.,* "A distributed particle filter for acoustic source tracking using an acoustic vector sensor network" in ISSNIP IEEE , pp. 1-5 April 2014

FUTURE TASKS

Future	20	16	2017								
	Nov	Dec	Jan	Feb	Mar	ch		Jun	Aug	Sep	Oct
Tasks	1	2	3	4	5	6	7	8 (*)	9	10	11
1.Multisensor Tracking DBT											
2. Non-stationary BASS											
3. Implementation											
4. Tests											
5. Publications (Journals)											