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MOTIVATION OF THE WORK THESIS OBJECTIVES

Develop a methodology that allows to detect the
emotions of the people through multimedia data.

The motivation that has led to the choice of this area of knowledge for the Doctoral Thesis Is threefold:

* The communication of emotions is crucial for social relationships and survival (Ekman, 1992), and the
voice Is possibly one of the main channels for conveying them. Therefore, it Is vital to have systems that
allow automatic recognition of the emotions of people through this signal, which also have a wide range of
aplications including notably:

oHuman-computer interface.

o It helps human-human communication.

o eHealth, especially in the area of mental health.

o Managing voice files.

SECUNDARY OBJECTIVES

* Detect cases of use in which emotion recognition have an application
of interest.

* Select multimedia records that they are interesting for the resolution
of the problem: voice, image, movement records, etc.

* |[f It I1s necessary, we will create a new database enabling us to
innovative results.

* Detect those algorithms and/or methodologies that they have the
better behavior to solving the problem.

*mprove, If It Is possible, the behaviour of the selected algorithms.

* Define an architecture that enables in real-time to solve these
problems.

* Itis afield of research much less developed than the automatic speech recognition.
*[he rapid development in machine learning, especially with regard to the Deep Neural Networks. The

possibility of applying these new techniques in the field of automatic recognition of emotions will open
many lines of research with promising results.
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