

SDN-ORIENTED GLOBAL NETWORK OPTIMIZATION ALGORITHM

Saber Mhiri, Cristina López Bravo Francisco Javier González Castaño University of vigo

UniversidadeVigo

Motivation of the work

Currently, mobile terminals feature multiple interfaces to adapt to the steadily increasing number of available wireless access networks. This provides a suitable ground for offloading data from cellular to different WIFI access points using the integration of WIFI and LTE offered by LTE v.12 and v.13. There is a parallel trend towards network programming relying on centralized controllers, of which the Software-Defined Network (SDN)[1] architecture with the OpenFlow[2] protocol is a clear exponent. Moreover, since 5G networks are expected to support latency-critical applications, any decision delay should be minimized whenever possible. To this end, we propose to take near instantaneous decisions based exclusively on extremely simple network-side estimations of the history of user terminals.

Results

We applied Kalman filtering, to predict terminal positions [6] [7].

We managed to predict the right position of the terminal with a success rate of **75%**.

This module analyzes terminal flows in the background to characterize them. This information is sent to the controller to be stored in the FHD.

Fig 1 : Terminal position

Thesis Objectives

We intend to design and implement a SDN-oriented global network optimization algorithm. This algorithm will use flow steering and will be applied on an SDN[1] architecture in which the endterminals are integrated with the core network.[3].

Research plan

1. First year Part 1

- Establishing an essential knowledge of cellular standards.
- Establishing an essential knowledge of network protocols:
 - Network managing protocols: ICMP, SNMP.
- Network managing flow-based protocols: sFlow, OpenFlow, NetFlow.
- Remote terminal configuration protocols: SNMP, NetConf, TR-069, OMA LWM2M.

• Statistics collection daemons: collected, sFlow. • Mastering SDN:

• Applying the SDN approach to control a wireless network using the Mininet test bed.

 Using the RYU controller to monitor, configure and manage flows in a network.

Part 2

• Design of a network prototype.

• Use the Mininet test bed to emulate a backhaul network based on the designed prototype.

• Control the network using the RYU controller.

2. Second year

Part 1

• Designing a Global Network Optimization Algorithm. Part 2

 Mile stone: Submitting a paper to a conference (June) 2016) [4].

3. Third year

part 1

 Adding user profiling to upgrade optimization algorithm performance.

Part 2

• Enhancement of the optimization algorithm by developing and adding a mobility plug-in.

• Mile stone: Submitting a journal paper (May 2018) [5]

Next Year Objectives Defend the thesis. 	Distributed optimization from predictions based on historic data vs.	0	86.050 59.855	0.046 0.073	5.931 9.426	0.042		-
Current work • Writing the thesis.	closest-AP schema	10	23.477	0.096	12.460	0.014	1000 0.60 0.65 0.70 0.75 0.80 0.85 0.80 0.85 0.90 0.95 0.90 0.95	1.00

References

- [1] Giraldo-Rodriguez, Carlos, et al. "TSA: Terminal-supported 5G network optimization." Wireless and Mobile Computing, Networking and Communications (WiMob), 2015 IEEE 11th International Conference on. IEEE, 2015.
- [2] Agarwal, Sankalp, Murali Kodialam, and T. V. Lakshman. "Traffic engineering in software defined networks." INFOCOM 2013 Proceedings. IEEE, 2013.
- [3] Vissicchio, Stefano, et al. "Safe updates of hybrid SDN networks." Université catholique de Louvain, Tech. Rep (2013).
- [4] Mhiri, Saber, et al. "Terminal Profiling for Flow Prediction and Balancing in an Access Network."
- [5] Mhiri, Saber, et al."Fast Decision algorithms for Efficient Access Point Assignment" IEEE Transactions on Network and Service Management, [submitted]
- [6] Musoff, Howard, and Paul Zarchan. Fundamentals of Kalman filtering: a practical approach. American Institute of Aeronautics and Astronautics, 2005.
- [7] Wolpert, Daniel M., and Zoubin Ghahramani. "Computational principles of movement neuroscience." Nature neuroscience 3.11s (2000): 1212.
- [8] Giraldo-Rodríguez, Carlos, et al. "TSA, an SDN architecture including end terminals." Consumer Communications & Networking Conference (CCNC), 2016. IEEE, 2016.
- [9] C. Giraldo et al, Systems and Methods for Optimizing Network Traffic, US2017/0093722 A1, 30-3-2017.
- · [10] A. Raschellà, F. Bouhafs, M. Seyedebrahimi, M. Mackay and Q. Shi (2017), "Quality of Service Oriented Access Point Selection Framework for Large Wi-Fi Networks," in IEEE Transactions on Network and Service Management, vol. 14, no. 2, pp. 441-455.