Optimization of SmartGrid critical-event management

Antón Román Portabales, Martín López Nores (Thesis Advisor)

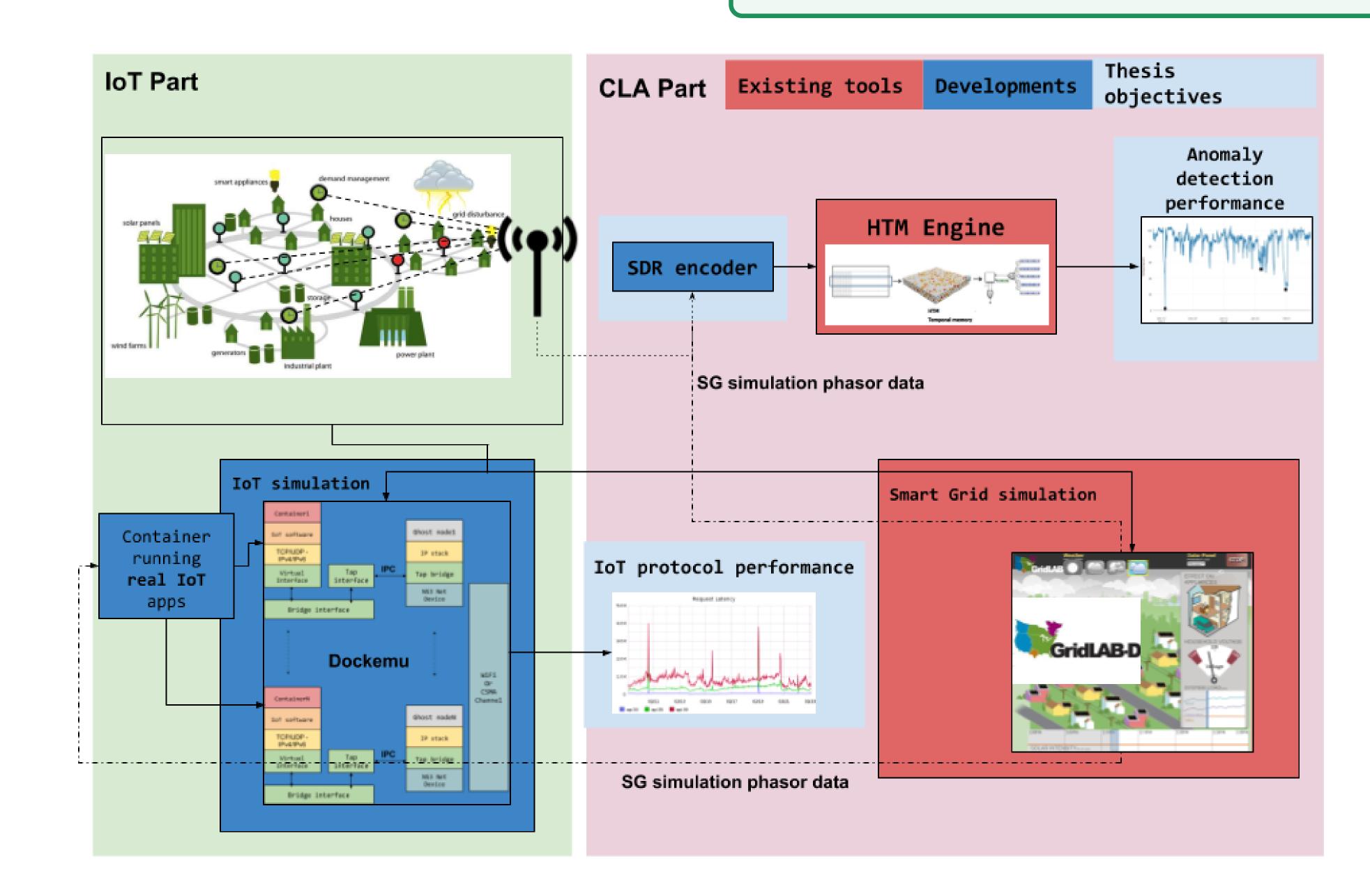
Quobis Networks, O Porriño, Spain

anton.roman@quobis.com

1. Motivation of the work

- Smart Grid (SG) requires a strong integration between all the electrical elements and control nodes by intensively using IT systems.
- SG technologies play a key role in the transition to distributed and renewable power sources.
- SG requires near real-time processing of critical events in order to keep the proper operation of the Grid.
- Two problems related to the management of critical events in SG demand specific attention:

The **performance** of IoT protocols currently used in SG, especially in applications where **low latency** is a critical requirement. The use of Machine Learning algorithms for **real-time detection of anomalies** from SG sensor values.


2. Thesis Objectives

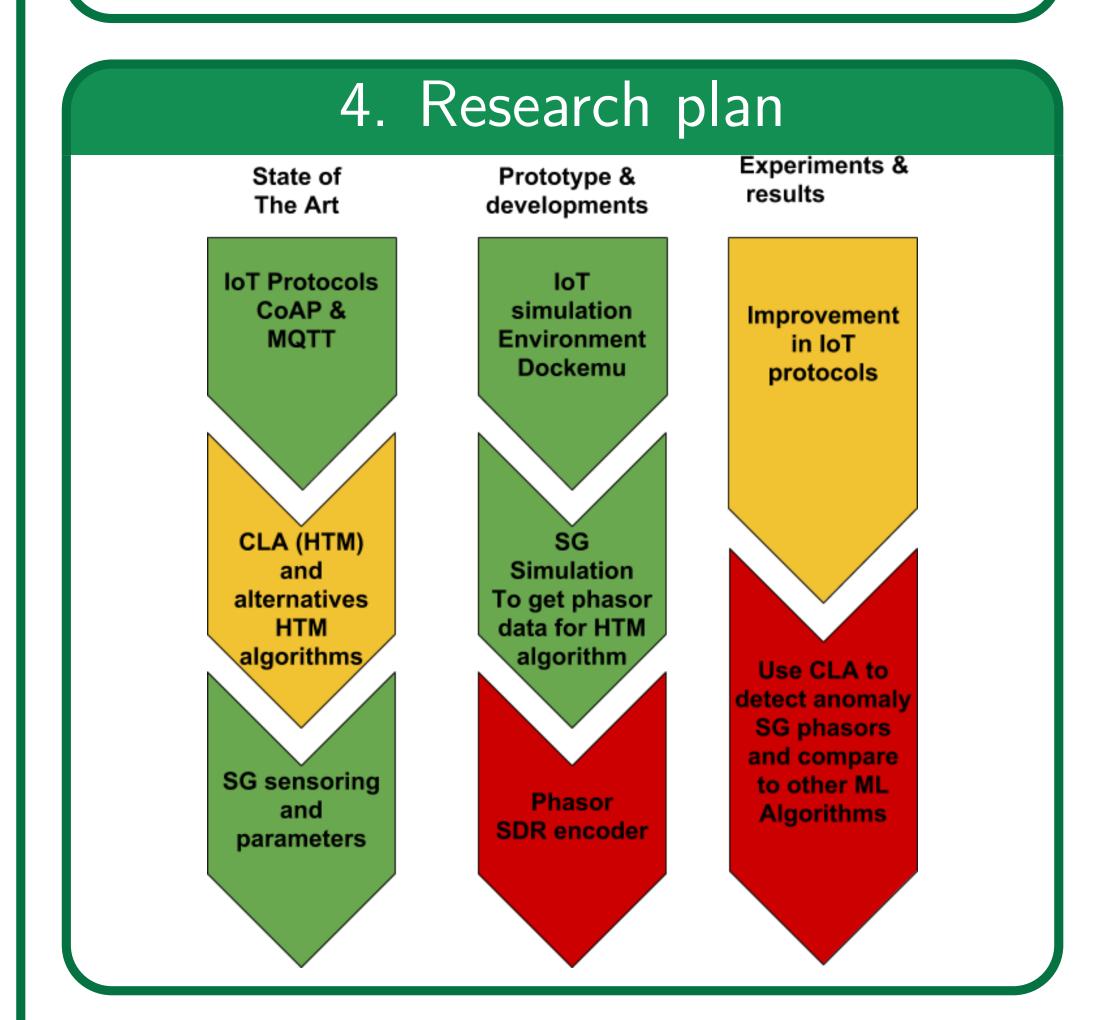
Comparison of standardized application layer IoT protocols used in SG to handle critical events.

Using **CLA** (Cortical Learning Algorithm) to find anomalies in a SG critical parameter: **phasors**.

Proposal of **improvements for one IoT protocol performance** in timecritical applications.

Development of an **open-source simulation environments** for both IoT communication and SG models to conduct experiments.

3. Results


It was hard to replicate simulations from other papers and use real software.

I decided to adapt and improved an exiting network simulation framework based on NS3 and Linux containers [2].

- The new version allows to simulate real implementations of IoT protocols under different network conditions.
- A paper documenting the design, implementation and early result was submitted to **Simultech 2018** [1].

Figure 1: This diagram gives a complete view of the thesis of objectives. It is divided in two main parts: IoT and CLA. The blue box in the **IoT part** represents the adapted *Dockemu* simulator [1] and the red boxes on the **CLA part** represents the HTM engine to detect anomalies and the GridlabD SG simulation to generate a realistic sample of phasor values.

5. Next year planning

6. References

[1] Anton Roman and Martin Lopez. Dockemu:

		% COMPLET E		2017											2018										2019										2020					
	TASK TITLE		Q 1				Q 2			Q3				Q1			Q 2			Q3				Qı			Q 2				Q3			Q1			Q 2			
			J	F	MA	N N	I J	JA		s o	N	D	J	FN	1 A	м	J	J	Α	s o	N	D	J	F	ма	М	J	J	Α	S (N O	D	J	FN	A	м	l l	4		
1	Project Conception and Initiation																																							
1.1	HTM Study	100%																																						
1.1.1	IoT protocol analysis	100%																																						
2	IoT protocol analysis																																							
2.1	Study simulation allternatives	22%																																						
2.2	IoT simulation paper	100%																																						
2.3	CoAP and MQTT experiments	40%																																						
2.4	CoAP Tunning paper	0%																																						
	CoAP vs MQTT paper	0%																																						
3	HTM application in IoT																																							
3.1	HTM model for phasor	10%																																						
3.2	Phasor encoder implementation	0%																																						
3.2	Simulation model	10%																																						
3.2.1	Phasor encoder paper	0%																																						
4	Results and writing																																							
4.1	Final simulations	0%																																						
4.2	Writing of memory	0%																																						

extension of a scalable network simulation framework based on docker and ns3 to cover iot scenarios. In 2018 Simultech 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (Submitted), may 2018.

[2] Marco Antonio To, Marcos Cano, and Preng Biba. DOCKEMU – a network emulation tool. In 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops. IEEE, mar 2015.